Path-Breakers:
How Does Women’s Political Participation Respond to Electoral Success?*

Sonia Bhalotra
University of Essex

Irma Clots-Figueras
Universidad Carlos III de Madrid

Lakshmi Iyer
Harvard Business School

October 24, 2013

Abstract

This paper analyzes the effect of a woman’s electoral victory on women’s subsequent political participation. Using the regression discontinuity afforded by close elections between women and men in India’s state elections, we find that a woman winning office leads to a large and significant increase in the share of female candidates from major political parties in the subsequent election. This stems mainly from an increased probability that previous women candidates contest again, an important margin in India where a substantial number of incumbents do not contest re-election. There is no significant entry of new female candidates, no change in female or male voter turnout and no spillover effects to neighboring areas. Further analysis points to a reduction in party bias against women candidates as the mechanism driving the observed increase in women’s candidacy.

JEL Codes: J16, J71, P16

* We thank Siddhartha Bandhyopadhyay, Rafael di Tella, Akshay Mangla, Anandi Mani, Massimo Morelli, Rohini Pande, Albert Saiz and numerous seminar participants for invaluable feedback. Damian Clarke, Maya Shivakumar and the staff of Paradigm Data Services provided excellent research assistance.
1. **Introduction**

A recent literature suggests that women’s political representation influences policy choices in their favor (Chattopadhyay and Duflo 2004, Rehavi 2007, Miller 2008, Iyer et al. 2012, Bhalotra and Clots-Figueras forthcoming, Brollo and Troiano 2012). However, women continue to be under-represented in political office across the world, comprising only 11% of India’s national legislators, 18% of the members of the United States Congress and 22% of the United Kingdom’s House of Commons. Despite a wave of quota setting, women comprised more than a third of parliamentary seats in only 19 of 189 countries in 2007. The gender gap in politics is larger than in many other domains and is argued to be particularly resistant to change (Norris and Inglehart 2000). In this paper we investigate whether women’s political candidacy and electoral turnout respond to the “demonstration effects” of women winning office. Exposure to women politicians may lead party leaders and voters to alter their priors regarding women in leadership and executive roles, or women leaders may serve as role models to stimulate other women’s engagement in politics. We construct a stylized model of political candidacy and test its implications to identify the role of these alternative mechanisms.

Constituency level data on elections to state legislatures in India during 1980-2007 suggest that candidacy is an important barrier to women holding political office. Over this period, women comprised 5.5% of India’s state legislators, but only 4.4% of candidates. Women’s voter turnout has also consistently lagged that of men, at 59% compared with 66% and to the extent that women vote for “descriptive representatives,” this too may act to limit the share of women in government. Since constituencies in which women win may be different in terms of voter preferences or other characteristics from constituencies in which women lose, we use a regression discontinuity design that involves comparing future candidacy and turnout in constituencies in which women won in close elections against men with those in which women lost in close elections against men.

Our main findings are as follows. First, the electoral victory of a woman results in a large and significant increase of 9.2 percentage points in the fraction of female candidates fielded by major parties in subsequent elections in the same constituency. Second, there is no impact on female or male voter turnout. We verify that the regression discontinuity strategy is valid by

1 See Duflo (2012) for a comprehensive review of the relationship between women’s empowerment and economic development.
showing that there are no underlying discontinuities in the relationship between women’s electoral success and constituency characteristics, prior election outcomes or characteristics of candidates besides gender.

The increase in women’s candidacy is driven primarily by the increased propensity of prior candidates to contest again; we find no significant increase in the entry of new female candidates. The “intensive margin” is a non-trivial margin in India where, in contrast to the US, incumbents do not necessarily run for re-election, and incumbents who do run have been shown to have an electoral disadvantage (Linden 2004, Uppal 2009). In our data, 34% of female winners and 28% of male winners do not run for re-election.

The increase in women’s candidacy following a woman’s electoral victory is fairly local, being limited in time and space. There is no evidence of area spillovers: a woman’s electoral victory does not increase women’s candidacy in nearby constituencies. In addition, we find no evidence that a woman winning increases the chances that a woman wins in the next election. Consistent with this, the candidacy effect fades with time since the event of a woman winning, from a 9.2 percentage point increase in the next election to a 4.2 percentage point increase in the election after that.

In order to gain insight into the relative importance of alternative mechanisms driving the relationship between a woman winning political office and subsequent increases in the share of women candidates, we present a stylized model of political candidacy closely related to that in Casas-Arce and Saiz (2011). We use it to generate predictions that help us discriminate between bias against women on the part of party leaders, voter bias against women candidates, and the supply of potential women candidates. We argue that the evidence points to a reduction in party bias. To discriminate between party and voter bias, we exploit the model’s prediction that a reduction in party bias would lead to increases in women’s candidacy from the incumbent party alone but a reduction of voter bias is expected to lead to increases in women’s candidacy across parties. Studying the vote share of new women candidates allows us to discriminate between a reduction in party bias (which would lower the ability threshold for entry of women) and the entry of more qualified women. To further investigate the role of candidate supply, we exploit the staggered implementation of quotas for women in local government that could have led to a massive expansion of the pool of women candidates available as candidates for state legislatures.
We find that the increase in women’s candidacy after a woman wins is unique to the incumbent party, is associated with a reduction in the vote share of new women, and is no larger in elections that occur after the pool of women in local government expands. There is hence little evidence that reduction in voter bias or entry of more qualified women drive the results, consistent with our initial findings of no significant increase in voter turnout or entry of new women. We also find that female election winners are significantly more likely to run from re-election from the same party, compared to male winners, suggesting that the intra-party environment is better for them than before.

Our paper makes two substantive advances to the literature on women’s political participation. First, the analysis of women’s candidacy and turnout is scarce in the economics literature. While a few recent studies analyze the effects of electoral quotas, evidence of the dynamics of women’s political participation in a competitive setting is even more scarce. The implementation of quotas may introduce distortions, such as changing candidate quality differentially for men and women (Chattopadhyay and Duflo 2004, Besley et al. 2012, Bardhan et al. 2010, Deininger and Nagarajan 2011), creating a backlash against female leaders (Gagliarducci and Paserman 2011) or strengthening taste-based discrimination (Boisjoly et al. 2006, Beaman et al. 2009). Moreover, it is unclear that affirmative action in general eliminates negative stereotypes (Coate and Loury 1993). The evidence on the success of quotas in increasing women’s political representation is mixed in general (see Pande and Ford 2011 for a review, also see Eggers 2011, Campa 2012, Bagues and Esteve-Volart 2012) and has been debated in the case of India. For these reasons, it is important to identify the extent to which a spontaneous dynamic operates in launching women into the political sphere when quotas are absent.

Our second contribution is that we analyze three plausible barriers to women’s candidacy in a given setting, implementing tests that allow some discrimination between them. While many papers discuss the possible mechanisms behind the low representation of women in public or

2 Beaman et al. (2009) find that women are significantly more likely to stand for and win elected positions in village councils in West Bengal if the post of chief councilor was reserved for a woman in two consecutive preceding elections. There are no significant impacts after one election period, in fact voter evaluations of women leaders deteriorate after one term of exposure. Bhavnani (2009) finds increases in women’s candidacy and winning chances in reserved constituencies in Mumbai after quotas are lifted, but a subsequent re-analysis shows much weaker results, most likely because of the “discouragement” of women candidates in areas that were not subject to quotas (Sekhon and Titiunik, 2012).
corporate leadership positions, fewer are set in the political domain and even fewer attempt to identify how the initial success of women may increase participation. There are some notable exceptions. Casas-Arce and Saiz (2011) use Spanish election data after the implementation of gender quotas for candidates to show that parties sacrifice vote share rather than nominate female candidates, an indication of party bias against women. Beaman et al (2009) use village level data from one Indian state and document a decline in statistical discrimination against women after men are exposed to women leaders through quotas, but no decline in taste-based discrimination. They do not attempt to examine mechanisms such as party bias (given that they look at local elections in which political party participation is restricted in many states) or the entry of new women into politics. We explicitly bring political parties into the picture, focusing upon elections to state legislative assemblies in which political parties nominate candidates. There is little previous research testing the relevance of candidate supply in determining low levels of political participation of women in politics, although this is possibly the most discussed hypothesis in the wider literature (e.g. Lawless and Fox 2010) as it ties in with laboratory and non-laboratory evidence from other domains that women are more likely than men to shy away from competitive environments (Niederle and Vesterlund 2007, Croson and Gneezy 2009).

The rest of the paper is structured as follows: Section 2 provides relevant background on the Indian political system, Section 3 describes our empirical strategy, and Section 4 presents our main results. Section 5 outlines a simple theoretical framework for candidate selection, Section 6 provides empirical evidence to distinguish between alternative mechanisms, and Section 7 concludes.

2. Women in Indian Politics

2.1 Indian Electoral Politics

India is the world’s largest democracy, with a parliamentary system of government at both the central and state levels. Elections are held every five years, on a first-past-the-post system in single-member constituencies. States may occasionally hold midterm elections, before

3 For instance, Babcock and Laschever (2003) focus on women’s reluctance to negotiate higher salaries and promotions, and Bertrand, Goldin and Katz (2010) highlight the role of career interruptions and fertility decisions in the business careers of MBA students. Quotas are now increasingly proposed in non-political fields as well-see Bertrand (2012) for an examination of Norway’s corporate board quotas.
the five-year term of the government expires, if the governing coalition loses the confidence of the majority of the state legislature and an alternative government cannot be formed. Elections are very competitive in India, with more than 100 parties participating in the 2009 national elections.

We focus on elections to state legislatures. In India’s federal system, state governments are responsible for several development policy areas including law and order, health and education. State level parties play a significant role in forming governing coalitions at the center, and previous research has shown that state-level voting behavior is highly correlated with voting in national elections (Ravishankar, 2009). Further, since state-level political office is often a stepping stone for contesting national elections, our work captures the dynamics of female participation at the “pipeline” stage for national office.

There are currently no quotas for women in state or national level elections. A one-third quota for women in district and village level councils was mandated by a constitutional amendment in 1993. In March 2010, a bill proposing to enact a one-third quota for women in national and state legislatures was passed by the upper house of parliament, but it has not yet been voted on in the lower house, making the analysis in this paper highly topical.

In India’s political system, party leaders decide who their candidate will be in every constituency. There are no primaries as in the United States, and the process of choosing candidates is not transparent. We conducted interviews with politicians from several Indian political parties to understand the candidate selection process. In general, it was described as follows: parties draw up an initial short list of 2-5 candidates from each constituency, and then embark on information gathering exercises, including third-party voter surveys, to assess candidate quality. The main candidate quality emphasized by all parties was the ability to win the election, termed “winnability” in Indian politics. To this end, several metrics including the candidate’s name recognition within the constituency, service to the party, financial resources, caste identity and internal party support were considered relevant. Interestingly, very few party leaders felt that women voters were more likely to vote for women candidates, though several

4 The impact of this reform has been examined in several recent papers including Chattopadhyay and Duflo (2004), Beaman et al (2009) and Iyer et al (2012). Political quotas exist at that state and national levels for members of the Scheduled Castes and Scheduled Tribes; Pande (2003) and Krishnan (2007) examine the policy impact of these quotas.
expressed the view that women were less interested in politics than men, and that a political career was not attractive to women.

2.2 Data Sources

We obtained data on elections to state legislative assemblies in 3473 constituencies from the Election Commission of India over the period 1980-2007 in which most states had six elections. Electoral constituency boundaries remained fixed through this period, so we do not have to worry about concerns such as gerrymandering which might differentially affect the electoral prospects for women. We have information on the name, gender, party affiliation and votes obtained by every candidate as well as gender-specific voter turnout by constituency. We use data for the 16 major states of India which account for over 95% of the total population. We obtained relevant demographic data (literacy, urbanization) at the constituency level from the 2001 census.

We tracked candidates by name over successive elections to identify whether candidates in a specific election were present in the previous election. Overall, in our sample, three-quarters of all candidates did not contest the previous election i.e. are “new” candidates. Systematic data on candidate attributes are available only after 2004, when the Election Commission made it mandatory for all candidates to file affidavits giving details of their age, education, asset ownership and any pending criminal charges. We have this information for candidates in 14 out of 16 states, which held elections between 2004 and 2007. Compared to male candidates, women candidates are on average three years younger, less likely to have completed high school, and less likely to have any criminal charges filed against them (summary statistics available upon request). In examining the validity of our regression discontinuity strategy, we will verify that none of these characteristics vary across winners and losers in close elections.

5 The states included are: Andhra Pradesh, Assam, Bihar, Gujarat, Haryana, Himachal Pradesh, Karnataka, Kerala, Madhya Pradesh, Maharashtra, Orissa, Punjab, Rajasthan, Tamil Nadu, Uttar Pradesh and West Bengal. In 2001, three new states of Jharkhand, Chhattisgarh and Uttarakhand were carved out of the larger states of Bihar, Madhya Pradesh and Uttar Pradesh respectively. For the first two states, electoral constituency boundaries remained fixed over time, and we drop the data from the Uttarakhand state elections of 2002 and 2007 since we are unable to match the electoral constituencies over time.

6 We thank Rikhil Bhavnani and Sandip Sukhtankar for sharing these data with us.

7 Candidate names are often spelt differently across elections and candidates often change party affiliations too. We therefore did a case by case manual matching of candidate names over time.
2.3 Women’s Political Participation in State Elections

Women are dramatically under-represented in India’s state legislatures. As mentioned earlier, only 5.5% of state legislators were women, but only 4.4% of candidates were women. Almost 70% of electoral races had no female candidates at all, and only 7% of races had more than one woman candidate. While showing a secular increase over our sample period, women’s participation varied dramatically across states. For instance, in 2000-2007, the share of female candidates from major parties varied from almost 13% in the state of Andhra Pradesh to only 4% in the neighboring state of Karnataka (Figure 1). Major parties in general are more rather than less likely to nominate women candidates, with 5.6% of their candidates being women.

There is no a priori evidence that women avoid more competitive races, indeed, electoral races in which a female candidate is present tend to have larger electorates and a greater number of candidates. In 2013, only four out of forty major parties in India were headed by women (the Indian National Congress, the AIADMK, the Bahujan Samaj Party and the Trinamool Congress). These parties have a slightly higher share of female candidates, 7% compared to the 5% share for major parties not headed by women. Women are less likely than men to contest elections again, irrespective of whether or not they win. Only 66% of female winners and 31% of female runners-up contest the next election, compared to 72% of male winners and 40% of male runners-up.

State elections in India are competitive. In our data, the mean (median) number of candidates per constituency is ten (eight). Of these, only 34% (2.6 candidates on average) are from major political parties and only 3 candidates on average manage to obtain more than 5 percent of the total votes, suggesting that the majority of candidates in India’s electoral races are not politically viable. In the analysis to follow, we therefore consistently present results

8 The under-representation of women in politics mirrors their significant disadvantage in other domains. In 2007, India was ranked 114 out of 182 countries on the Gender Development Index of the UNDP. The 2011 census showed that there were only 940 women for every 1000 men and only 65% of women were literate, compared with 82% of men.
9 We classify a party as a “major party” in a state if the party won more than 5 percent of the seats in the state in any year.
separately for major party candidates and competitive candidates in order to focus on candidates who are politically meaningful.10

3. **Identifying the Effects of Women’s Electoral Success: The Regression Discontinuity Design**

We are interested in how indicators of women’s political participation at the electoral constituency level respond to a woman having won the previous election. The identification problem is that a woman’s political victory might be correlated with unobserved characteristics such as voter preferences, which might directly determine women’s participation as voters and candidates in subsequent elections. We address this problem using a regression discontinuity (RD) estimator, which focuses on mixed-gender electoral races decided by a very narrow margin. Treatment assignment depends on the running variable, the vote margin between a woman and a man. The probability of a woman winning an election exhibits a sharp discontinuity when this vote margin is zero, since the candidate with the most votes wins, irrespective of how close the runner up stands.11 The identifying assumption is that the assignment of treatment around the threshold is uncorrelated with any observed or unobserved characteristics of the candidate or the constituency i.e. that constituencies in which women win in close elections against men are similar to constituencies in which women lose narrowly against men, except for the gender of the winning candidate.12 The estimated model is of the form:

\begin{equation}
Y_{ist} = a + b \text{WomanWon}_{is,t-1} + f(M_{is,t-1}) + e_{ist}
\end{equation}

\(Y_{ist}\) is a measure of female political participation for constituency \(i\) in state \(s\) in year \(t\). We focus upon the share of women candidates (overall and among major parties) and female voter turnout

10 There is a strong overlap between these categories. The vast majority (88\%) of major party candidates are competitive in the sense of obtaining at least 5\% of total votes cast. Similarly, about 73\% of competitive candidates belong to a major party.

11 See Lee (2008) for the seminal use of the regression discontinuity design using electoral data. Studies which use close elections between men and women include Rehavi (2007), Clots-Figueras (2011 and 2012), Bhalotra and Clots-Figueras (forthcoming) and Broockman (2012).

12 We thus implicitly test whether winning matters discontinuously, that is, significantly more than a good electoral performance which falls short of winning (captured by woman being close runners-up in the “control group” of constituencies in which women lose close elections against men). Using an OLS specification, we later verify that having a woman as runner-up has no additional effect on future female candidacy.
but we also look at the competitiveness of women candidates and at male turnout. The sample is restricted to elections in which a man and a woman were among the top two vote-getters\(^{13}\) and \(M_{i,t-1}\) is defined as the margin of victory between the female and the male politician in the previous election in the constituency. \(\text{WomanWon}_{i,t-1}\) is a dummy which equals one if a woman won against a man \((M_{i,t-1} > 0)\) and zero if a woman lost against a man \((M_{i,t-1} < 0)\). The parameter \(b\) captures the causal impact of this event on women’s participation as candidates and voters in the next election.

So as to increase our confidence that we estimate the impact of the discontinuity that determines winning rather than an underlying non-linearity in the relationship between participation \((Y)\) and the vote margin \((M)\), we fit a flexible function of the vote margin, \(f(M_{i,t-1})\), on either side of the discontinuity, using second-order polynomials (e.g. Lee, Moretti and Butler 2004). We show that our results are robust to adding higher-order polynomials. We also estimate local linear regressions (Hahn et al, 2001; Imbens and Lemieux, 2007), restricting the sample to an optimal bandwidth around the discontinuity, with the optimal bandwidth selected by applying the method in Imbens and Kalyanaraman (2011). Finally, we investigate robustness to using a “discontinuity sample”, restricting the sample to a very small bandwidth around the discontinuity and testing the differences in means on both sides of the discontinuity (Angrist and Lavy, 1999).

To investigate area spillovers, we replace the dependent variable in (1) with an indicator of women’s political participation in constituencies other than the index constituency \(i\), but within the same administrative district (which typically consists of 9-10 electoral constituencies). To examine persistence in the relationship of interest, we estimate equation (1) replacing the first lag with longer lags, first the second, then the third lag. These provide reduced form estimates of how women’s participation in election \(t\) responds to a woman having won in election \(t-2\) or \(t-3\) (ten and fifteen years ago), respectively, implicitly averaging over the gender of the winner in intervening elections.

While regression discontinuity estimates are likely to satisfy internal validity conditions, they may or may not have external validity. In particular, the relationship that we identify may not hold in constituencies that do not have close elections between men and women. In the appendix, we report OLS estimates using the entire sample and a panel data specification:

\(^{13}\) The top two vote-getters in mixed gender races get on average 81% of the total votes in their constituencies.
\[Y_{ist} = a_{is} + b_t + c\text{WomanWon}_{ist-1} + d'X_{ist} + u_{ist} \]

where \(a_{is} \) is a fixed effect for constituency \(i \) in state \(s \), \(b_t \) is a fixed effect for the election cycle,\(^{14}\) and \(X_{ist} \) are constituency- and time-varying variables.\(^{15}\)

4. Does Women’s Political Participation Respond to Prior Electoral Success?

4.1 Regression Discontinuity Estimates

We find that the event of a woman winning an election leads to a large and statistically significant increase of 9.2 percentage points in the share of women candidates from major parties in the subsequent election (Table 2, column 2). As the mean share of women among major party candidates is 23% in the regression discontinuity sample, this is close to a 40% increase. The share of women among competitive candidates (defined as those who get at least 5% of total votes cast) also increases significantly (column 3). This is consistent with the strong overlap between major party and competitive candidates. Interestingly, when we consider all candidates, there is only a statistically insignificant increase of 1.5 percentage points in future female candidacy (Table 2, column 1). So the evidence rejects the notion that women are token candidates, the increase in candidacy that we observe following an electoral victory by a female politician is of politically viable women fielded by politically relevant parties.

The increase in the female candidate share is not driven by a decrease in the overall number of candidates. Neither the total number of candidates nor the number from major parties changes significantly following a female electoral victory (columns 7 and 8). Instead, there is a substitution of female for male candidates among major parties: the number of female candidates increases by 0.177 and the number of male candidates decreases by 0.21, and these coefficients are statistically significant (columns 9 and 10).

A visual representation of these estimates is in Figure 2B, which shows a jump in the major party female candidate share at the zero vote margin, to the left of which a woman narrowly lost

\(^{14}\) Since elections are held every five years on average, we use the five year intervals (1980-84, 1985-89 etc) to denote the “election cycle”. Our results remain unchanged if we include annual year dummies instead.

\(^{15}\) Standard errors for OLS regressions are clustered at the constituency level, for RD regressions they are clustered at the state-electoral cycle level, given that in many constituencies there is only one election between a woman and a man. However, RD results with standard errors clustered at the district level are very similar to those reported in the paper and available on request.
the previous election and to the right of which a woman narrowly won the previous election against a man. The jump at the threshold is smaller for the overall share of female candidates (Figure 2A).

We next examine how much of the observed rise in women’s candidacy represents entry of new female candidates, defined as those who did not contest the previous election. We find no evidence of entry; the regression coefficient for the new female share of major party candidates is small, negative and statistically insignificant (see Table 2, column 4 and Figure 2C). So a woman winning raises women’s candidacy in the next election primarily through raising the chances that prior women candidates obtain the party nomination. We also examined whether women’s participation as voters changes in response to women’s electoral victory. We find no significant change in female or male voter turnout (Table 2, columns 5 and 6). We have also verified that voter turnout is not significantly associated with the fraction of female candidates in the current election (results available on request). This contrasts with the finding that both black and white voters are more likely to turnout to vote when blacks are on the ballot in U.S. elections (Washington 2006). In addition, we find no significant increase in the probability that a woman wins the next election (Table 2, column 11).

We present OLS estimates using the universe of elections in an appendix (Table A1). The OLS coefficients are similar to the RD coefficients for major party, competitive candidates, and for electoral turnout, if somewhat larger in magnitude (columns 1, 3, 6 and 7). However, OLS results are different from RD for the share of new women candidates and the overall share of female candidates (columns 4 and 5). We see that a woman placing as a runner-up in the previous election has no impact on future female candidacy, justifying our focus on winning (column 2).

4.2. Spillovers and Persistence

We find no evidence of spillover effects to other constituencies within the same district (Table 3, column 1). This is consistent with our interviews with politicians which described the candidate selection process as being constituency specific: local name recognition or local resources were a major determining factor, and “parachuting” in candidates from outside the constituency seldom happened. A related analysis of US data similarly finds no impact of a woman being elected on the participation of women in neighboring districts (Broockman 2012).
The effects of a woman winning an election persist to the ten year mark (two elections later) although the marginal increase in the share of women candidates from major parties is reduced to just under half its size at the five year mark (a 4.2% point increase). At the fifteen year mark it drops to effectively zero (Table 3, columns 2 and 3), though the sample size declines by 23% and 40% when considering these lags. This diminishing effect is consistent with increased female candidacy depending upon women winning elections, and we saw that a woman’s victory in one election does not imply a higher probability that a woman wins the next election.

4.3 Robustness and Validity of the Regression Discontinuity Design

4.3.1. Robustness to functional form and sample for the running variable
We conduct a series of robustness checks for the RD result that the female share of major party candidates in a constituency rises following a woman having won (Table 3, Panel B). The baseline specification in Table 2 controls for a quadratic polynomial in the victory margin that is allowed to be different at both sides of the discontinuity; we now enrich the specification with controls for third and fourth order polynomials in the victory margin. The point estimate decreases with the order of the polynomial but is not significantly different from the reported baseline coefficient (Table 3, columns 4 and 5). The estimate is again similar when a local linear regression is estimated on a sample restricted to an optimal bandwidth around the discontinuity (column 6)\(^{16}\) and when the sample is restricted to a very narrow bandwidth of 0.05 and we effectively compare the mean of the dependent variable on both sides of the discontinuity (column 7). We then include state-year fixed effects which control for all relevant election-specific factors such as whether the previous Chief Minister was a woman, whether there was a woman party leader in the current election, or whether a new woman-headed party had been formed. Again the estimated coefficient retains its size and significance (column 8).

4.3.2. Continuity of the vote margin
For the identification strategy to be valid the density of the running variable has to be continuous at the threshold so male and female candidates have the same probability of winning in close

\(^{16}\) The optimal bandwidth is 0.24.
elections. Manipulation of the vote margin is unlikely in our setting, since the Election Commission of India has a well-established reputation of independence and political neutrality, and Indian elections are usually considered free and fair. Following McCrary (2008), we formally verify that there is no significant discontinuity at the zero point; the estimated discontinuity is 0.0534 with a standard error of 0.0951 (see Figures 3A and 3B).

4.3.3. Fake or placebo discontinuities
We tested for discontinuous increases in candidacy at points of the vote margin distribution at which there should be no jumps, that is, points other than zero. As suggested in Imbens and Lemieux (2007), we implemented a placebo check re-computing the RD estimates using “fake” discontinuities at the medians of the subsamples on either side of the zero vote margin. The coefficient of interest is much smaller and statistically insignificant (Table 4, Panel A).

4.3.4. Do covariates and pre-determined variables show discontinuities?
A virtue of the RD design is that its assumptions are testable. We verified that a range of demographic covariates (population gender ratios, literacy rates, urbanization rates) and pre-determined electoral variables (total number of female voters, the number of candidates, voter turnout and the number of female candidates from major parties in the previous election) do not vary discontinuously at the RD threshold (Table 4, Panel B). We test this using our main specification and with local linear regressions run on an optimal bandwidth. Only one of the 26 coefficients is significant, and reassuringly, all coefficients are very small, which means that these variables are balanced around the discontinuity.

4.3.5 Do characteristics other than gender vary discontinuously?
In a seminal paper, Lee (2008) investigated party incumbency advantage in the US using close elections between Democrats and Republicans. Recent studies (Caughey and Sekhon 2011, Grimmer et al., 2011) have questioned the validity of the RD premise that the (party) identity of the winner is quasi-random in close elections, showing that in fact the incumbent party in US elections tends to have systematically greater chances of winning even when elections are close. However Eggers et al. (2013) argue that such sorting is unique to the US House in the post-war period, and find no evidence of it in several other countries including India.
We nevertheless test for sorting and find no evidence that winners and losers in close elections between women and men are significantly different in a range of relevant characteristics such as gender, education, wealth, criminal convictions, belonging to a major political party or being the incumbent (Figure 4). If this were not the case, we may attribute to gender other characteristics of winners. Importantly, women are not more likely than men to win these elections (Figure 4A), and incumbents do not have an advantage in winning close elections (Figure 4F).

5. A Simple Model of Candidate Choice

In this section, we analyze a simple model of candidacy, based on the framework of Casas-Arce & Saiz (2011). The model incorporates three barriers to the participation of women in politics: party bias, voter bias, and a tendency for women to be less willing to come forward as candidates than men. Women winning and holding office may lead to party leaders or voters revising their bias or to potential women candidates being encouraged to compete, so the impact of women winning on female candidacy that we have identified may arise through any of these mechanisms. The stylized model we present here is used to generate testable implications that help identify the empirical relevance of the alternative mechanisms.

In our model, there is a continuum of voters with mass 1 and their preferred policy outcomes are distributed uniformly along a policy continuum between 0 and 1. There are two parties in the model, with policy positions exogenously given at 0 and 1. We assume that party policy positions are decided before candidate selection (assumption A1), so as to isolate the determinants of female candidacy. This is reasonable in the Indian setting, where policy positions are decided by the party leadership at the state level and party nominees are then chosen at the constituency level.

5.1 Timing of events

There are three time periods. First, potential candidates (male and female) decide whether to be in contention or not, creating a pool for parties to choose from. There may be differences between men and women in the cost of entering politics, perhaps because of social norms

17 Previous work on women’s political representation endogenizes policy choice but does not model candidate selection (e.g. Chattopadhyay and Duflo, 2004).
regarding the public roles of women, because women believe the payoff to running is lower, or
because women perceive a career in politics to be incompatible with family responsibilities
(Lawless and Fox 2010). This means that the ability distributions of potential male and female
candidates can be different. In the second stage, parties choose their nominee for each
constituency, in a process described in more detail below. Finally, voters vote to elect candidates
to power.

5.2 Voters

Voters care about policies, candidate ability and gender. A voter with preferred policy \(x \in [0,1] \) obtains the following utility by voting for party \(p \in \{0,1\} \):

\[
U(x,p) = C – \frac{1}{2} \lambda \cdot |p-x| + A_p – d_v \cdot W_p
\]

where \(C \) is a constant and \(\lambda \) measures the extent to which voters penalize deviations of party
ideology from their own policy preference. Holding everything else constant, if \(\lambda \) is low, voters
do not care a lot about party ideology and are more likely to switch based on candidate
characteristics. \(A_p \) is the ability of party \(p \)’s candidate, \(W_p \) equals one if party \(p \)’s candidate is a
woman and \(d_v \geq 0 \) measures the extent of voter bias against women. For simplicity, voter bias
against women is assumed independent of the policy preferences of the voter. Candidates’
abilities are known to voters before they vote (assumption A2), so that voter bias is a taste
discrimination parameter. However, if statistical discrimination takes the form of voters
consistently assuming that the expected ability of women is lower than their actual ability, this
would be observationally equivalent to voter bias in our model.\(^{18}\)

Voters turn out to vote as long as the net utility of voting is higher than a reservation
utility \(C \) of not voting. We assume that the opportunity cost of voting is low enough that all
voters turn out to vote (assumption A3) which, in our setting, is without loss of generality since
we find no changes in voter turnout following a woman’s electoral victory. Given the full turnout

\(^{18}\) Statistical discrimination could also take the form of voters assuming that the variability of women’s ability is
larger than the variability of men’s ability (Aigner and Cain 1977). We do not model this. In our data, there is no
significant difference in the variability of realized vote shares for men and women major party candidates
(considering vote share as a proxy for candidate ability). In fact, vote share variability is slightly lower for women.
Of course, vote shares are measured after candidate selection.
assumption, the equilibrium outcome is such that all voters in $[0, x_m]$ vote for party 0, and all voters with ideal points in $[x_m, 1]$ vote for party 1, where the marginal voter x_m satisfies

$$x_m = \frac{1}{2} + \frac{1}{\lambda} \left[(A_0 - A_1) - d_v (W_0 - W_1) \right]$$

Party 0 gets the vote share x_m and Party 1 has vote share $(1 - x_m)$.

5.3 Parties

Potential candidates vary in their ability, with ability distributions f_{pm} and f_{pw} for men and women within party p. We assume that potential candidate ability is initially unknown, that parties draw a random sample from the male and female candidate pool within their parties, after which ability is revealed and then parties make the candidate choice that maximizes their utility. We assume that parties choose their party nominees simultaneously (assumption A4), a fair representation of the Indian political system where there are no official primaries to enable parties to predict the other party’s candidate choice and all parties have a common deadline to declare an official candidate, typically one month before the election.

Parties are interested in winning elections. We therefore assume that they are interested in maximizing their vote share, but that they also discriminate against women in a taste-based manner i.e. that party p experiences a disutility $d_p \geq 0$ from having women candidates. After Party 0 obtains candidate ability draws a_{w0} and a_{m0}, it has to decide whether to choose a man or a woman to maximize utility $U^0 = x_m - d_0 W_0$. Taking the choices of Party 1 to be given (i.e. W_1 and A_1 are fixed), this implies solving:

$$\text{Max} \left(\frac{1}{\lambda} A_0 - \frac{1}{\lambda} d_v W_0 - d_0 W_0 \right)$$

Party 0 therefore chooses the woman candidate over the man if

$$a_{w0} > a_{m0} + d_v + \lambda d_0$$

19 This is without loss of generality, since winning is an increasing function of vote share with a discontinuity when vote share exceeds half in a two-party setting, and a different (endogenous) threshold in a multi-party setting.

20 As with voter bias, a model of statistical discrimination in which parties assume that women and men have different expected average ability would be observationally equivalent to this one.
A similar equation applies to party 1. So when neither parties nor voters discriminate (i.e. \(d_v = 0 \) and \(d_0 = d_1 = 0 \)), parties will choose the highest ability candidate, irrespective of the candidate’s gender. However if either or both of political parties and voters discriminate, then the ability threshold for a woman candidate to be selected will be higher than that for male candidates.

Equation (4) captures the three mechanisms that might drive a rise in female candidacy in party 0 after a woman from that party wins an election: (a) a decline in the party’s disutility of having a woman candidate (\(d_0 \)), which is party-specific, either because the incumbent woman winner may act to recruit more women or, relatedly, because of the ascendance of woman-friendly factions within the party. The latter is consistent with a model in which party utility is the aggregate utility of current incumbents (as in Frechette, Maniquet and Morelli 2008); (b) a decline in voter bias against women (\(d_v \)) as voters get accustomed to seeing women in leadership positions, and (c) a rightward shift in the ability distribution of potential women candidates, due to the entry of more qualified women candidates. It is clear from equation (4) that if party and voter bias do not change then only a rightward shift in the ability distribution of potential female candidates can lead to an increase in the probability of selecting a female candidate. Using this framework we conduct some comparative static exercises.

6 Testing Mechanisms

6.1 Reduced voter bias or an intra-party mechanism?

A reduction in voter bias (\(d_v \)) will lower the ability threshold for choosing a female candidate for both parties (see equation 4 above), leading us to expect to see greater female candidacy in both parties. On the other hand, if a woman’s victory reduces party bias against women or leads to greater entry of potential female candidates within the woman winner’s party, then the increase in female candidacy will be restricted to the party from which the woman won. So we are able to distinguish voter bias reduction from intra-party mechanisms by running the following regression:

\[
(H1) \text{Femcand}_{pist} = a + b_{10} \cdot \text{WomanWon}_{is, t-1} + b_{11} \cdot \text{WomanWon}_{is, t-1} \cdot \text{IncumbentParty}_{pist} + \\
+ b_{12} f(M_{is,t-1}) + b_{13} f(M_{is,t-1}) \cdot \text{IncumbentParty}_{pist} + u_{pist}
\]
where Femcand_{pist} is the probability that the candidate from party p in constituency i of state s and time t is a woman, $\text{WomanWon}_{p,t-1}$ is a dummy which equals one if a woman won the last election in that constituency, and $\text{IncumbentParty}_{pist}$ is a dummy which equals one for the party from which the woman won in the previous election. If voter bias reduction were the only mechanism at work, we would expect $b_{11}=0$.

The evidence rejects voter bias reduction in favor of a within-party mechanism since the estimated b_{11} (the interaction coefficient) is significantly greater than zero (Table 5, column 1). The increase in the probability that a woman candidate is fielded is unique to the incumbent party, there being a decline in the probability that the other party fields a woman candidate. These results also hold in OLS estimates on the full sample (Table A2, column 1). Combined with our previous result of no entry of new candidates (Table 2), this means that the primary effect of electoral victory is to enable women winners to contest for re-election. In Section 6.4, we examine whether this pattern is different for male winners.

We now look to distinguish between a reduction in party bias against female candidates and a rightward shift in the ability distribution of potential candidates.

6.2 Reduced party bias vs the candidate supply mechanism

In general, the change in vote share for party 0 between elections $t-1$ and t is given by:

$$V_{0,t} - V_{0,t-1} = \frac{1}{\lambda} \left[(A_{0,t} - A_{0,t-1}) - (A_{1,t} - A_{1,t-1}) - d_{v,t} (W_{0,t} - W_{1,t}) + d_{v,t-1} (W_{0,t-1} - W_{1,t-1}) \right]$$

If more qualified women come forward within party 0 after that party has a female winner, we have $E(A_{0,t} - A_{0,t-1}) > 0$ provided party 0 fields a woman candidate both times. If there is no change in voter bias ($d_{v,t} = d_{v,t-1}$) and no change in the ability distribution in party 1 (i.e. $E(A_{1,t} - A_{1,t-1}) = 0$), then the expected change in vote share for female candidates is positive i.e. $E [V_{0,t} - V_{0,t-1}] > 0$. Since this will not happen if the same woman runs again ($A_{0,t} = A_{0,t-1}$), it follows that the vote share of new female candidates will go up if new, more qualified women are induced to enter. On the other hand, if party bias falls, this will lower the ability threshold for women

Note that, in the spirit of the “difference in discontinuities” methodology, see Grembi et al (2012), we also interact the margin and the margin polynomials with the $\text{IncumbentParty}_{pist}$ dummy. This allows us to test whether the two discontinuities (for incumbent parties and other parties) are significantly different, while allowing the margin functions for both types of parties at both sides of the discontinuity to be different.
potential candidates and new women candidates will have lower expected ability than before i.e. \(\text{E}(A_{0,t} - A_{0,t-1}) < 0 \), implying a lower vote share on average i.e. \(\text{E} [V_{0,t} - V_{0,t-1}] < 0 \).\(^{22}\) We can discriminate between these mechanisms by estimating the following regression:

\[
(\text{H2}) \quad \text{Voteshare of new female candidates}_{ist} = a + b_{20}\text{WomanWon}_{ist-1} + b_{21}\text{f}(M_{ist-1}) + u_{ist}
\]

The increased candidate supply hypothesis implies \(b_{20} > 0 \), while reduction in party bias implies \(b_{20} < 0 \). The estimated \(b_{20} \) is negative and statistically significant (Table 5, column 2) consistent with a reduction in party bias against women candidates rather than an increase in the supply of potential women candidates. A similar result holds in OLS estimates on the wider sample (Table A2, column 2). This finding resonates with our earlier result that a woman winning does not stimulate entry of new women candidates (see Section 4). In the next section, we conduct a further test of the candidate supply hypothesis that focuses upon the supply of experienced women.

6.3 Does an increase in the supply of experienced potential female candidates matter?

In general, it is difficult to measure the ability of political candidates (Besley et al, 2012). In our case, variables such as education, income and other relevant characteristics are not available for the full sample of candidates in Indian electoral data and the test presented in section 6.2 relies upon vote share as a measure of ability. Here we assess the candidate supply mechanism by exploiting a massive shock to the supply of women with political experience determined by a constitutional amendment in 1993 that mandated a one-third quota for women in district and village level councils. As in Iyer et al. (2012), we use the variation in the incidence of this shock generated by the fact that the Indian states implemented this mandate in different years (for exogenous reasons). We test whether the increase in women’s candidacy following a woman winning a state seat is greater in state elections that occur after the more local village and district level quotas for women were put in place. To do this we run a difference-in-discontinuities model as follows:

\(^{22}\) The voter bias reduction mechanism yields ambiguous results: on the one hand, the ability threshold to become a candidate has been lowered for women, but all women now receive more votes.
(H3) \(\text{Femcand}_{ist} = a + b_{30} \times \text{WomanWon}_{is,t-1} + b_{31} \times \text{WomanWon}_{is,t-1} \times \text{PostQuotas} + b_{32} \times \text{f}(M_{is,t-1}) \\ + b_{33} \times \text{f}(M_{is,t-1}) \times \text{PostQuotas} + u_{ist} \)

where \(\text{PostQuotas} \) is an indicator which equals one if the state has implemented gender quotas in local elections, and zero if it has not. If the supply of women with political experience (and connections) were a constraint then we would expect \(b_{31} > 0 \).

The estimated \(b_{31} \) is positive and statistically insignificant (Table 5, column 3). This result is relevant because it highlights the lack of “upward mobility” in the political sphere, the implementation of quotas at lower levels does not appear to increase female candidacy at higher levels of government.

6.4 Do female winners behave differently from male winners in future elections?

Our results so far indicate that the biggest effect of a woman’s electoral victory is to enable her to run for re-election. Is this pattern common to male winners as well? We investigate this by running the following regression in the mixed-gender elections sample:

\[
(\text{H4}) \ \text{ContestNextElec}_{cist} = a + b_{40} \times \text{Won}_{cis,t} + b_{41} \times \text{Won}_{cis,t} \times \text{Female}_{cis} + b_{42} \times \text{f}(M_{is,t}) + b_{43} \times \text{f}(M_{is,t}) \times \text{Female}_{cis} + u_{cist}
\]

where \(\text{ContestNextElec}_{cist} \) is a dummy for whether candidate \(c \) in constituency \(i \) of state \(s \) and year \(t \) is a candidate in the next election, \(\text{Won}_{cis,t} \) is a dummy variable indicating whether candidate \(c \) won the mixed-gender race, \(\text{Female}_{cis} \) is an indicator for whether the candidate is female, and \(M_{is,t} \) is the margin of victory. The coefficient of interest is \(b_{41} \), which captures the difference between female and male winners.

We find that both male and female candidates are equally likely to re-run for election after a victory (Table 5, column 4).\(^{23}\) However, when we examine the probability of running for re-election from the same party as a dependent variable, we find a significant gender difference. Women winners are more likely to contest the next election from the same party as before, compared to male winners (Table 5, column 5), and this effect is not present for women who lose the election. We interpret this as supportive evidence that the within-party environment has improved for women following an electoral victory.

\(^{23}\) When running the same specification without the gender interaction we find that winners in mixed-gender races are 21% more likely than losers to contest the next election. Men who win in close elections against other men are 19% more likely to contest for re-election, an effect which is not statistically different.
7. **Conclusions**

Using plausibly exogenous variation in women winning political office, we identify a large and significant increase in the subsequent share of women candidates fielded by major parties in Indian state elections. The increase arises mainly from an increased propensity for previous candidates to run for re-election, rather than the entry of new women candidates. Given that a substantial fraction of incumbents in Indian state elections do not re-run and female incumbents overall are less likely to re-run than male incumbents, this is an important result. There is however no significant increase in the probability that a woman wins the next election. Consistent with this, the estimated impact on women’s candidacy fades over time although a significant impact persists through two elections, which is a period of ten years. There are no significant spillovers to other constituencies in the same district, and no change in voter turnout amongst women (or men). Testing the implications of our stylized model suggests that reduction in party bias against women is the primary driver of the increase in women’s candidacy. We find little support for a reduction in voter bias or an increase in the supply of more qualified potential candidates.

Our results show how large and yet how local the power of a good example is. The novel and important new finding is that parties appear willing to change their priors with regard to the viability of women candidates after observing a woman win an election. However, we still know very little about internal party processes in developing country democracies, and how they are likely to react to policy measures such as gender quotas. Our results also highlight that a “demonstration effect” is not enough: further economic, institutional or policy incentives are needed to stimulate entry of new women into the political arena and more widespread participation of women as voters. Both these directions are likely to be fruitful areas for future research.

24 Existing literature on political parties in India has mainly focused on the strategies used to reach out to voters, rather than candidate selection processes (Chandra 2004; Thachil 2011).
References

Broockman, David E. (2012). Do Female Politicians Empower Women To Vote or Run for Office? A Regression Discontinuity Approach. Mimeograph, Department of Political Science University of California, Berkeley

Figure 1
Female Share of Major Party Candidates in Major Indian States, 1980-2007
Figure 2: Regression Discontinuity Estimates for Female Political Participation

A: Fraction of female candidates

B: Female share of major party candidates

C: New female share of major party candidates

D: Female voter turnout

Legend:
- Fraction of female candidates
- Fitted values (male)
- Fitted values (female)
- New female share of major party candidates
- Fitted values (male)
- Fitted values (female)
- Female voter turnout
- Fitted values (male)
- Fitted values (female)
Figure 3: Testing the Continuity of the Victory Margin between Female and Male Candidates

A. Density of the victory margin

B. Testing for density discontinuities at zero (McCrary Test)

Notes: Sample restricted to those where a man and a woman were the top two vote-getters in the election. Discontinuity estimate in Figure B (log difference in height): .05338 (s.e. = 0.0951)
Figure 4: Characteristics of Winners and Losers in Close Male-Female Elections

A. Gender of winning candidate

B. Any criminal charges filed against candidate

C. Candidate has less than high school education

D. Log (net worth)

E. Candidate belongs to a Major Party

F. Candidate was the incumbent
Table 1
Descriptive Statistics

<table>
<thead>
<tr>
<th></th>
<th>Whole Sample</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraction of female candidates</td>
<td>22478</td>
<td></td>
<td>0.044</td>
<td>0.082</td>
<td>0</td>
<td>0.8</td>
</tr>
<tr>
<td>Female share of major party candidates</td>
<td>22420</td>
<td></td>
<td>0.056</td>
<td>0.156</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>New female share of major party candidates</td>
<td>22420</td>
<td></td>
<td>0.038</td>
<td>0.129</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Female share of competitive candidates</td>
<td>22478</td>
<td></td>
<td>0.050</td>
<td>0.134</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Female voter turnout</td>
<td>22421</td>
<td></td>
<td>0.587</td>
<td>0.154</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Male voter turnout</td>
<td>22415</td>
<td></td>
<td>0.664</td>
<td>0.124</td>
<td>0.004</td>
<td>1</td>
</tr>
<tr>
<td>Woman won previous election (dummy)</td>
<td>22296</td>
<td></td>
<td>0.048</td>
<td>0.214</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Regression Discontinuity Sample</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraction of female candidates</td>
<td>1898</td>
<td></td>
<td>0.120</td>
<td>0.124</td>
<td>0</td>
<td>0.8</td>
</tr>
<tr>
<td>Female share of major party candidates</td>
<td>1897</td>
<td></td>
<td>0.232</td>
<td>0.252</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>New female share of major party candidates</td>
<td>1897</td>
<td></td>
<td>0.054</td>
<td>0.153</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Female share of competitive candidates</td>
<td>1898</td>
<td></td>
<td>0.213</td>
<td>0.217</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Female voter turnout</td>
<td>1896</td>
<td></td>
<td>0.586</td>
<td>0.155</td>
<td>0.010</td>
<td>0.975</td>
</tr>
<tr>
<td>Male voter turnout</td>
<td>1895</td>
<td></td>
<td>0.660</td>
<td>0.125</td>
<td>0.011</td>
<td>0.946</td>
</tr>
<tr>
<td>Woman won previous election (dummy)</td>
<td>1898</td>
<td></td>
<td>0.528</td>
<td>0.499</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 2
Women’s Electoral Success and Future Political Participation: Regression Discontinuity Estimates

Panel A: Main Variables

<table>
<thead>
<tr>
<th></th>
<th>Fraction of female candidates</th>
<th>Female share of major party candidates</th>
<th>Female share of competitive candidates</th>
<th>New female share of major party candidates</th>
<th>Female voter turnout</th>
<th>Male voter turnout</th>
</tr>
</thead>
<tbody>
<tr>
<td>Woman won previous election</td>
<td>0.015</td>
<td>0.092 ***</td>
<td>0.063 ***</td>
<td>-0.014</td>
<td>-0.017</td>
<td>-0.004</td>
</tr>
<tr>
<td>(0.012)</td>
<td>(0.022)</td>
<td>(0.022)</td>
<td>(0.013)</td>
<td></td>
<td>(0.015)</td>
<td>(0.012)</td>
</tr>
<tr>
<td>Observations</td>
<td>1898</td>
<td>1897</td>
<td>1898</td>
<td>1897</td>
<td>1896</td>
<td>1895</td>
</tr>
<tr>
<td>Polynomial</td>
<td>2nd order</td>
<td>2nd order</td>
<td>2nd order</td>
<td>2nd order</td>
<td>2nd order</td>
<td>2nd order</td>
</tr>
</tbody>
</table>

Panel B: Supplementary Variables

<table>
<thead>
<tr>
<th>Total number of candidates</th>
<th># of major party candidates</th>
<th># of female major party candidates</th>
<th># of male major party candidates</th>
<th>Woman wins next election</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Woman won previous election</td>
<td>-1.062</td>
<td>-0.033</td>
<td>0.177 ***</td>
<td>-0.210 **</td>
</tr>
<tr>
<td>(1.465)</td>
<td>(0.094)</td>
<td>(0.052)</td>
<td>(0.096)</td>
<td>(0.043)</td>
</tr>
<tr>
<td>Observations</td>
<td>1898</td>
<td>1898</td>
<td>1898</td>
<td>1898</td>
</tr>
<tr>
<td>Polynomial</td>
<td>2nd order</td>
<td>2nd order</td>
<td>2nd order</td>
<td>2nd order</td>
</tr>
</tbody>
</table>

Sample restricted to constituencies where a woman and a man were among the top two vote-getters in the previous election.

Standard errors in brackets, clustered at the state-election level.

***, **, * indicate significance at 1%, 5% and 10% level respectively.
Table 3
Spillovers, Persistence and Robustness

Panel A: Spillovers and Persistence

<table>
<thead>
<tr>
<th></th>
<th>Female candidacy in rest of district</th>
<th>Persistence 2nd lag</th>
<th>Persistence 3rd lag</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Woman won previous election</td>
<td>-0.003</td>
<td>0.042 *</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td>[0.007]</td>
<td>[0.024]</td>
<td>[0.026]</td>
</tr>
<tr>
<td>Observations</td>
<td>1897</td>
<td>1467</td>
<td>1130</td>
</tr>
<tr>
<td>polynomial</td>
<td>2nd order</td>
<td>2nd order</td>
<td>2nd order</td>
</tr>
</tbody>
</table>

Panel B: Robustness of RD Results to Changes in Functional Form and Bandwidth

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Woman won previous election</td>
<td>0.078 ***</td>
<td>0.063 **</td>
<td>0.0594 **</td>
<td>0.089 ***</td>
<td>0.087 ***</td>
</tr>
<tr>
<td></td>
<td>[0.026]</td>
<td>[0.028]</td>
<td>[0.026]</td>
<td>[0.021]</td>
<td>[0.023]</td>
</tr>
<tr>
<td>Observations</td>
<td>1897</td>
<td>1897</td>
<td>932</td>
<td>421</td>
<td>1897</td>
</tr>
<tr>
<td>polynomial</td>
<td>3rd order</td>
<td>4rd order</td>
<td>linear</td>
<td>none</td>
<td>2nd order</td>
</tr>
<tr>
<td>bandwidth</td>
<td>optimal [0.24]</td>
<td></td>
<td></td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>State*year fixed effects</td>
<td></td>
<td></td>
<td></td>
<td>yes</td>
<td></td>
</tr>
</tbody>
</table>

Sample restricted to constituencies where a woman and a man were among the top two vote-getters in the previous election.

Standard errors in brackets, clustered at the state-election level.

***, **, * indicate significance at 1%, 5% and 10% level respectively.
Table 4: Validity of Regression Discontinuity Strategy

Panel A: Regression discontinuity estimates at "fake discontinuity" points

<table>
<thead>
<tr>
<th></th>
<th>Quadratic polynomial in vote margins</th>
<th>Local linear regressions, optimal bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient on female winner (dummy) [standard error]</td>
<td>0.030 [0.040] -0.003 [0.030] -0.051 [0.037] -0.024 [0.029]</td>
<td></td>
</tr>
<tr>
<td>Fake discontinuity point</td>
<td>-0.1224 +0.1248 -0.1224 +0.1248</td>
<td></td>
</tr>
</tbody>
</table>

Note: the fake discontinuity points are chosen as the median of the observations on the left and the median of the observations on the right of the real discontinuity.

Panel B: Regression Discontinuity Effects of Female Electoral Success on Covariates and Pre-Determined Variables

<table>
<thead>
<tr>
<th>Demographic covariates</th>
<th>Quadratic polynomial in vote margins</th>
<th>Local linear regressions, optimal bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraction female</td>
<td>0.001 [0.002] 0</td>
<td>0 [0.003]</td>
</tr>
<tr>
<td>Total literacy rate</td>
<td>-0.008 [0.015] 0.006 [0.019]</td>
<td></td>
</tr>
<tr>
<td>Female literacy rate</td>
<td>-0.017 [0.018] 0.007 [0.023]</td>
<td></td>
</tr>
<tr>
<td>Fraction SC/ST population</td>
<td>0.004 [0.015] -0.009 [0.013]</td>
<td></td>
</tr>
<tr>
<td>Fraction urban population</td>
<td>0.022 [0.023] 0.052 [0.032]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outcomes from previous election</th>
<th>Quadratic polynomial in vote margins</th>
<th>Local linear regressions, optimal bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male electors</td>
<td>-2061.794 [3406.182] -6819.58 [4272.63]</td>
<td></td>
</tr>
<tr>
<td>Female electors</td>
<td>-1514.283 [2921.579] -4356.18 [3231.76]</td>
<td></td>
</tr>
<tr>
<td>Number of candidates</td>
<td>-1.281 [1.669] -0.279 [0.893]</td>
<td></td>
</tr>
<tr>
<td>Number of female candidates</td>
<td>0.048 [0.079] 0.162 [0.091]</td>
<td></td>
</tr>
<tr>
<td>Num female candidates from major parties</td>
<td>0.018 [0.032] 0.097 [0.054]</td>
<td></td>
</tr>
<tr>
<td>Male voter turnout</td>
<td>-0.013 [0.009] -0.004 [0.0197]</td>
<td></td>
</tr>
<tr>
<td>Female voter turnout</td>
<td>-0.028 * [0.014] 0.002 [0.024]</td>
<td></td>
</tr>
</tbody>
</table>
Table 5
Testing Mechanisms

<table>
<thead>
<tr>
<th>Party has a female candidate (dummy)</th>
<th>Vote share of new major party female candidates</th>
<th>Female share of major party candidates</th>
<th>Candidate runs for re-election</th>
<th>Candidate runs for re-election from the same party</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Woman won previous election</td>
<td>-0.173 *** *</td>
<td>-0.023 ** *</td>
<td>0.067 **</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.024]</td>
<td>[0.011]</td>
<td>[0.033]</td>
<td></td>
</tr>
<tr>
<td>Woman won previous election</td>
<td>0.757 ***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.046]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incumbent party dummy</td>
<td>-0.192 ***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.030]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Woman won previous election</td>
<td></td>
<td></td>
<td></td>
<td>0.044</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[0.045]</td>
</tr>
<tr>
<td>Post-quota period for local elections</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candidate wins election</td>
<td>0.108</td>
<td>0.150 **</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.075]</td>
<td>[0.071]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candidate wins election</td>
<td>0.153 ***</td>
<td>0.089 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.053]</td>
<td>[0.050]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female candidate</td>
<td>-0.083</td>
<td>-0.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.056]</td>
<td>[0.046]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>4852</td>
<td>1898</td>
<td>1897</td>
<td>3374</td>
</tr>
</tbody>
</table>

Standard errors in brackets, clustered at the state-election level. ***, ***, * indicate significance at 1%, 5% and 10% level respectively.
Sample restricted to constituencies where a woman and a man were among the top two vote-getters in the previous election.
RD estimates computed using a quadratic polynomial control in vote margins and a difference-in-discontinuities specification.
Column (1) restricted to major parties only.
<table>
<thead>
<tr>
<th>Woman won previous election</th>
<th>Female share of major party candidates</th>
<th>Female share of competitive candidates</th>
<th>Fraction female candidates</th>
<th>New female share of major party candidates</th>
<th>Female voter turnout</th>
<th>Male voter turnout</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>0.110 ***</td>
<td>0.109 ***</td>
<td>0.097 ***</td>
<td>0.041 ***</td>
<td>-0.083 ***</td>
<td>-0.003</td>
<td>-0.002</td>
</tr>
<tr>
<td>[0.009]</td>
<td>[0.009]</td>
<td>[0.008]</td>
<td>[0.004]</td>
<td>[0.007]</td>
<td>[0.003]</td>
<td>[0.003]</td>
</tr>
<tr>
<td>Woman was a runner-up in previous election</td>
<td>-0.004</td>
<td>[0.008]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-squared</td>
<td>0.38</td>
<td>0.38</td>
<td>0.40</td>
<td>0.36</td>
<td>0.22</td>
<td>0.77</td>
</tr>
<tr>
<td>Observations</td>
<td>22238</td>
<td>22238</td>
<td>22296</td>
<td>22296</td>
<td>22238</td>
<td>22240</td>
</tr>
</tbody>
</table>

Standard errors in brackets, clustered at the constituency level. *** , ** , * indicate significance at 1%, 5% and 10% level respectively. All regressions control for constituency and election cycle fixed effects, and district specific trends.
Table A2
Testing Mechanisms: OLS Estimates

<table>
<thead>
<tr>
<th></th>
<th>Party has a female candidate (dummy)</th>
<th>Vote share of new major party female candidates</th>
<th>Female share of major party candidates</th>
<th>Candidate runs for re-election</th>
<th>Candidate runs for re-election from the same party</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Woman won previous election</td>
<td>-0.077 ***</td>
<td>-0.095 ***</td>
<td>0.098 ***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.024]</td>
<td>[0.006]</td>
<td>[0.012]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Woman won previous election</td>
<td>0.540 ***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* incumbent party dummy</td>
<td>[0.046]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incumbent party dummy</td>
<td>-0.023 ***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.030]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Woman won previous election</td>
<td></td>
<td></td>
<td></td>
<td>0.029</td>
<td></td>
</tr>
<tr>
<td>*post-quota period for local elections</td>
<td></td>
<td></td>
<td></td>
<td>[0.018]</td>
<td></td>
</tr>
<tr>
<td>Post-quota period for local elections</td>
<td></td>
<td></td>
<td></td>
<td>0.012 ***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[0.004]</td>
</tr>
<tr>
<td>Candidate wins election*female candidate</td>
<td></td>
<td></td>
<td></td>
<td>0.071 ***</td>
<td>0.054 **</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[0.024]</td>
<td>[0.023]</td>
</tr>
<tr>
<td>Candidate wins election</td>
<td></td>
<td>0.311 ***</td>
<td>0.305 ***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.005]</td>
<td>[0.005]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female candidate</td>
<td></td>
<td>-0.093 ***</td>
<td>-0.031 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.018]</td>
<td>[0.016]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-squared</td>
<td>0.21</td>
<td>0.24</td>
<td>0.38</td>
<td>0.26</td>
<td>0.24</td>
</tr>
<tr>
<td>Observations</td>
<td>56546</td>
<td>22296</td>
<td>22238</td>
<td>38000</td>
<td>38000</td>
</tr>
</tbody>
</table>

Standard errors in brackets, clustered at the constituency level. ***, **, * indicate significance at 1%, 5% and 10% level respectively. Column 1 restricts to major parties only. All regressions control for constituency and election cycle fixed effects, and district specific trends.